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An e�ective RBFN-boundary integral approach for the
analysis of natural convection �ow
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SUMMARY

This paper presents a new radial basis function network-boundary integral approach for the analysis of
natural convection �ow. The use of integral equations (IEs) allows the set of simultaneous unknowns to
be con�ned to the boundary only. In this study, all boundary values including geometries are represented
by indirect radial basis function networks (IRBFNs), resulting in an e�ective boundary element method
(BEM) especially for the achievement of high Rayleigh numbers with relatively coarse and uniform
meshes. Convergence is obtained up to a Rayleigh number of 1:0e7 in the case of a square cavity
using a uniform mesh of 31× 31 and a Rayleigh number of 5:0e4 in the case of a horizontal concentric
annulus using a uniform mesh of 11× 21. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Heat transfer by natural convection in enclosed spaces has found many applications in eng-
ineering, such as nuclear reactor design, double glazing, cooling of electronic equipment,
aircraft cabin insulation, solar energy collection and thermal storage systems. As a result,
much experimental and theoretical work has been devoted to this topic in recent decades.
In the context of numerical simulation, natural convective heat transfer problems have been
simulated by a wide range of numerical methods, e.g. the indirect RBFN based method [1],
the di�erential quadrature method [2, 3], FDM [4–6], FEM [7, 8], FVM [9, 10] and BEM
[11–13].
The boundary element method (BEM) has become a powerful technique for solving par-

tial di�erential equations (PDEs) in science and engineering [14, 15]. An advantage of the
method is the reduction of the dimension of the solution space by one unit. For homogeneous
problems, e.g. potential problems governed by the Laplace equation or creeping viscous �ows
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governed by the Stokes equation, it is not necessary to compute the requisite function through-
out the domain of solution. In addition the internal values here are represented in an exact
form, making the BEM vastly superior in terms of e�ciency and accuracy in comparison with
the FDM and the FEM [16]. However, for non-linear or non-homogeneous problems such as
non-zero Reynolds number viscous �ows governed by the Navier–Stokes equation or heat
transfer problems governed by the Poisson equation, the above powers of the BEM weaken
due to the lack of the corresponding fundamental solutions. Consequently, some adjustments
are necessary. The non-linear terms now need be lumped together to form a ‘known’ forc-
ing function (pseudo-body force) so that the well-known BEM with the fundamental point
force solution for linear problems can be extended to solve non-linear ones [17]. As a re-
sult, an iterative process needs be employed to render non-linear terms linear. Furthermore,
the pseudo-body forces are accounted for in the boundary element formulations as volume
integrals, which normally require a discretization of the full domain for computation. How-
ever, for the latter, with the introduction of reference velocities and temperatures together
with the application of the divergence theorem, volume modelling can often be con�ned to
only a small portion of the problem domain, typically near obstacles or walls [18]. An al-
ternative is to use meshless techniques such as the DRM [19] and the particular solutions
[20] to transform volume integrals into surface integrals, resulting in a true BIE formulation.
Nevertheless, the BEM is still attractive for solving certain classes of problems without large
storage requirements.
The governing equations of natural convection represent coupling between the temperature

and velocity �elds and involve strong non-linearities. The momentum equation and the energy
equation here must be solved simultaneously. Onishi et al. [21] proposed a boundary element
formulation in terms of stream-function, vorticity and temperature as variables for the natural
convection problem. Accurate solutions of a square cavity problem were obtained only at
low Rayleigh numbers (Ra61:0e4) [11]. Skerget et al. [22] employed the velocity–vorticity–
temperature and velocity–vorticity–pressure–temperature IE formulations for the simulation of
thermally driven cavity �ow and found that the latter produced more stable results. Two
uniform meshes of 11× 11 and 21× 21 with linear boundary elements and linear triangu-
lar cells were employed and the results were reported for a Rayleigh number up to 1:0e5.
In Kitagawa et al.’s [11] work, a boundary element formulation in terms of the primitive vari-
ables, i.e. velocity and pressure, in conjunction with the use of a penalty function technique
was developed. In that work, the gradients of velocity and temperature were calculated directly
by di�erentiating the corresponding integral equations. With non-uniform discretization using
132 boundary nodes and 169 internal nodes for linear boundary elements and linear triangular
cells, the converged solutions were obtained up to Ra=1:e4 (an attempt at higher Rayleigh
number of 1:0e5 failed to converge). Later on, Kitagawa [23] pointed out the necessity of
using higher order cells to improve the solution accuracy and also to achieve convergence.
Non-uniform discretization, with quadratic quadrilateral cells and linear boundary elements
using 164 boundary nodes and 315 internal points, was employed and convergence was
achieved up to Ra=1:0e6. Note that the value of a penalty parameter was recommended
to be of the order of 1:0e4 to 1:0e5 in practice. Lower or higher values can make the results
less accurate or the iteration cycle unstable, respectively. From another point of view, the BEM
has also been incorporated with domain decomposition techniques, where the integral repre-
sentation formulae are applied to subdomains and a system of equations is then formed from
the assembly of subdomain matrices using the continuity conditions across common interfaces.
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The advantages of this approach are that the resultant coe�cient matrix is sparse=block-banded
and its solution is more e�cient. However, such an approach with a relatively large number
of subdomains is somewhat akin to the �nite element method. Power and Mingo [13] have
applied the dual reciprocity sub-domain decomposition approach for the analysis of natural
convection �ow in a square cavity. The domain integrals in each subdomain are transformed
into surface integrals via the DRM. This approach achieved convergence up to a Rayleigh
number of 2:0e4 using 16 uniform sub-regions with 48 surface quadratic elements and 100
internal points uniformly distributed in each sub-region. The authors reported that beyond this
value of Rayleigh number, problems associated with convergence appeared.
Recently, Mai-Duy and Tran-Cong [24, 25] have shown that the indirect radial basis func-

tion networks (IRBFNs) perform better than element-based methods for function interpolation.
The IRBFNs were then successfully introduced into the BEM scheme to represent bound-
ary values for the analysis of viscous �ow in a lid-driven cavity [26]. In this paper, the
IRBFN–BEM approach is extended to analyse natural convection �ows. It is shown that the
approximation of the boundary values by IRBFNs signi�cantly improves the performance of
the BEM in terms of higher Rayleigh number attainment and accuracy of the solution. To
demonstrate that the improved performance of the BEM is owing to the use of the IRBFN
interpolations to represent the variations of functions (velocity, traction, temperature, heat �ux
and geometry) along the boundary, all other aspects of the analysis are kept the same, i.e. a
single domain, the use of the Stokeslet fundamental solution (the primitive variables) and the
standard treatments for the convective terms by a successive substitution scheme and linear
triangular cell approximations. The present IRBFN–BEM can achieve a high Rayleigh number
value of 1:0e7 using a relatively coarse and uniform mesh of 31× 31 in the case of a square
cavity, and 5:0e4 using a uniform mesh of 11× 21 in the case of a horizontal concentric annu-
lus. For the former problem, convergence was observed to be very slow for Rayleigh number
above 1:0e7 which is here considered as a limit of the present approach. The remainder of
the paper is organized as follows. In Section 2, the governing di�erential equations of natural
convection problem and the corresponding boundary integral formulations are summarized.
A brief review of the indirect RBF networks is given in Section 3. The proposed IRBFN–
BEM scheme for the analysis of natural convection is presented in Section 4. Sections 5 and
6 are to verify the validity of the present method through the simulation of natural convection
�ow for a wide range of Rayleigh numbers in a square cavity and in a horizontal concentric
annulus, respectively. Section 7 gives some concluding remarks.

2. GOVERNING EQUATIONS

Consider the two-dimensional, steady-state, laminar, buoyancy-induced �ow of an incompress-
ible �uid of density � and viscosity �. With the employment of Boussinesq approximation,
i.e. the �uid is assumed to have constant properties except for the generation of buoyant force,
the equations for the conservation of mass, momentum and energy take the forms,

ui; i=0 (1)

�ui; jj − p; i=�ujui; j − �gi�(�− �0) (2)

k�; jj=�cpuj�; j (3)
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where tensor notation is used, the indices following a comma denote partial derivatives in
space, ui the velocity vector, p the pressure, � the temperature, �0 the reference temperature,
gi the gravitational acceleration vector, � the coe�cient of volumetric expansion, k the thermal
conductivity, cp the speci�c heat and �gi�(� − �0) the buoyant force vector. The dimension-
less governing equations can be found in Reference [11]. Three independent dimensionless
parameters, namely the Rayleigh number, the Prandtl number and the Grashop number are,
respectively, de�ned as

Ra=
�g(�h − �c)L3

��
; Pr=

�
�
; Gr=Ra=Pr

where �=�=� is the kinematic viscosity, �= k=�cp the thermal di�usivity, L the enclosure
width, g the gravitational constant, �c and �h the temperature of a cold wall and hot wall,
respectively (�0 = �c).
Equations (1)–(2) can be reformulated in terms of integral equations for a given spatial

point y∈� [17] as follows:

cij(y)uj(y) =
∫
�
Uij(y;x)tj(x) d�(x)− CPV

∫
�
Tij(y;x)uj(x) d�(x)

−�
∫
�
Uij(y;x)bj(x) d�(x) (4)

Uij(y;x)=
1
4��

[ri
r
rj
r

− �ij ln(r)
]

(5)

Tij(y;x)=− 1
�r

[
ri
r
rj
r
@r
@n

]
(6)

where CPV is Cauchy Principal Value, x the �eld point, Uij and Tij the Stokeslet fundamental
solutions, uj and tj the velocity and the traction vectors, respectively, bi= ujui; j − gi�(�− �0)
the pseudo-body force vector containing the non-linear acceleration term and the buoyant
force, cij the free term which is 0:5�ij if the boundary is smooth, ri= xi − yi, r= ‖x − y‖
and n is the direction of the outwardly unit vector normal to the boundary. If y is an interior
point then cij= �ij and the second integral on the RHS of (4) is a normal integral (i.e. not a
CPV one).
Equation (3) can be regarded as a Poisson’s equation here and hence it can also be trans-

formed into an integral formulation as follows. For y∈�,

c(y)�(y) + CPV
∫
�
q∗(y;x)�(x) d�(x) +

∫
�
b(x)u∗(y;x) d�(x)=

∫
�
u∗(y;x)q(x) d�(x) (7)

where � and q= @�=@n are the temperature and its gradient, respectively, n the direction of the
outwardly unit vector normal to the boundary, b= uj�; j=� the source function of a Poisson’s
equation, u∗ is the fundamental solution to the Laplace equation, e.g. for a two-dimensional
isotropic domain u∗=(12�) ln(1=r) in which r is the distance from the point y to the current
point of integration x, q∗= @u∗=@n, c(y)= 1

2 if the boundary is smooth. If y is an interior
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point then c(y)=1 and the �rst integral on the LHS of (7) is a normal integral (i.e. not a
CPV one).

3. IRBFN INTERPOLATION

Radial basis function networks (RBFNs) for approximation and interpolation of function have
received a great deal of attention over the last few decades (e.g. [27]). The RBF network
allows a conversion of a function to be approximated from a low-dimension space (e.g.
1D–3D) to a high-dimension space in which the function can now be expressed as a linear
combination of radial basis functions,

y(x)≈f(x)=
m∑
i= 1
w(i)g(i)(x) (8)

where m is the number of radial basis functions, {g(i)}mi=1 is the set of chosen radial basis
functions and {w(i)}mi=1 is the set of weights to be found. It has been proved that RBFNs with
one hidden layer are capable of universal approximation [28, 29] and as a result, RBFNs found
application in many disciplines. In the �eld of numerical solution of PDEs, some RBFNs
were successfully used in the boundary element method to transform the volume integrals
into equivalent boundary integrals [20, 30]. Furthermore, the networks were also developed
successfully to solve PDEs in procedures which are regarded as truly mesh-free methods (e.g.
[1, 24, 31–33]). However, it should be noted that it is still very hard to achieve such an
universal approximation RBFN in practice due to the di�culties associated with choosing the
network parameters such as the number of radial basis functions, their positions and widths.
In previous works, Mai-Duy and Tran-Cong [24, 25] proposed indirect RBFNs (IRBFNs)
which are based on the integration process, and their results showed that the IRBFNs perform
better than the usual direct RBFNs (DRBFNs) in terms of accuracy and convergence rate
for both function and its derivatives. In this paper, RBFNs are introduced into the BEM
scheme to approximate the boundary solution for the analysis of 2D steady natural convection
�ow problems. Hence, in the present BEM scheme, RBFNs only play the role of functional
approximators. For this reason, only the better approach (i.e. the indirect RBFNs rather than
the direct RBFNs) is considered here. In contrast to previous works [1, 24, 33] where the
IRBFNs were used to approximate globally (meshless) the strong form of the governing
equations (PDEs), the present work deals with the use of IRBFNs in the boundary element
part of the mesh which discretises the inverse statement of the governing equations. In view
of the fact that the BEM allows the reduction of the problem dimensionality by one, only
the IRBFN for function and its derivatives (e.g. up to the second order) in 1D needs to be
employed here and its formulation with multiquadrics (MQ) is brie�y recaptured as follows:

y′′(s)≈f′′(s)=
m∑
i=1
w(i)g(i)(s) (9)

y′(s)≈f′(s)=
m∑
i=1
w(i)H (i)(s) + C1 (10)

y(s)≈f(s)=
m∑
i=1
w(i) �H (i)(s) + C1s+ C2 (11)
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where s is the curvilinear co-ordinate (arclength), C1 and C2 are constants of integration and

g(i)(s)=((s− c(i))2 + a(i)2)1=2 (12)

H (i)(s) =
∫
g(i)(s) ds=

(s− c(i))((s− c(i))2 + a(i)2)1=2
2

+
a(i)2

2
ln((s− c(i)) + ((s− c(i))2 + a(i)2)1=2) (13)

�H (i)(s) =
∫
H (i)(s) ds=

((s− c(i))2 + a(i)2)3=2
6

+
a(i)2

2
(s− c(i)) ln((s− c(i)) + ((s− c(i))2 + a(i)2)1=2)

−a
(i)2

2
((s− c(i))2 + a(i)2)1=2 (14)

in which {c(i)}mi=1 is the set of centres and {a(i)}mi=1 is the set of RBF widths. The RBF width
is chosen based on the following simple relation:

a(i) =	d(i)

where 	 is a factor and d(i) is the minimum arclength between the ith centre and its neigh-
bouring centres. The factor 	 is simply chosen to be unity in all numerical examples in the
present study. Since C1 and C2 are to be found, it is convenient to let w(m+1) =C1, w(m+2) =C2,
�H (m+1) = s and �H (m+2) =1 in (11) which becomes

y(s)≈f(s)=
m+2∑
i=1
w(i) �H (i)(s) (15)

�H (i)=RHS of (14); i = 1; : : : ; m (16)

�H (m+1)=s (17)

�H (m+2)=1 (18)

The detailed implementation and accuracy of the IRBFN method were reported previously
[24, 25]. In the following section, the IRBFN is coupled with boundary integral equations for
analysis of natural convection �ows.

4. IRBFN-BI APPROACH FOR NATURAL CONVECTION

4.1. Introduction of IRBFNs into the BEM scheme

Integral equations allow the solving process to be largely con�ned to the boundary. After the
process is done, the boundary solution obtained provides sources to compute the interior solu-
tion. It can be seen that the accuracy of the boundary solution greatly a�ects the accuracy of
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the overall solution. As mentioned earlier, neural-like RBF networks are able to approximate
continuous functions arbitrarily well. In this section, the IRBFNs are employed to represent
the boundary solution. For simplicity of notation, the volume integrals in (4) and (7) are
denoted by VIm and VIe, respectively, in the following discussion.
In the standard BEM, local interpolations are used to approximate the boundary solution

via a subdivision of the boundary � into a number of small elements. On each element, the
geometry and the variations of the functions are assumed to have a certain shape such as linear
and quadratic ones. The CPV integrals can be indirectly computed by applying Equation (4)
to represent rigid body displacements and Equation (7) with the hypothesis of a constant
potential over the whole domain, while the weakly singular ones can be evaluated using well-
known techniques such as the logarithmic Gaussian quadrature and Telles’ transformation
technique [34].
In the present method, global approximations using IRBFNs are employed. The boundary

is also divided into a (smaller) number of segments of much larger size, provided that the
associated boundaries are smooth and the prescribed boundary conditions are of the same type.
On each segment, the variations of the functions (uj; tj; � and q) and the curved geometry
(if it exists) are approximated by IRBFNs. Due to the fact that none of the basis functions
employed in the network are null at the singular point (the point where the �eld point x and
the source point y coincide), the method for evaluating the CPV integrals in the standard
BEM cannot be applied directly here. To overcome this di�culty, the BIE formulations (4)
and (7) need to be rewritten in the form without CPV singularity as follows:∫

�
Tij(y;x)(uj(x)− uj(y)) d�(x)−

∫
�
Uij(y;x)tj(x) d�(x) + VIm=0 (19)

∫
�
q∗(y;x)(�(x)− �(y)) d�(x)−

∫
�
u∗(y;x)q(x) d�(x) + VIe=0 (20)

In the discretized form, Equations (19) and (20) become,

Ns∑
k=1

∫
�(k)

Tij(y;x)(uj(k)(x)− uj(l)(y)) d�(k) −
Ns∑
k=1

∫
�(k)

Uij(y;x)tj(k)(x) d�(k) + VIm=0 (21)

Ns∑
k=1

∫
�(k)

q∗(y;x)(�(k)(x)− �(l)(y)) d�(k)(x)−
Ns∑
k=1

∫
�(k)

u∗(y;x)q(k)(x) d�(k)(x) + VIe=0 (22)

where Ns is the number of segments, subscript (k) denotes general segments and the subscript
(l) indicates the segment containing the source point y. The variations of velocity uj(k), traction
tj(k), temperature �(k) and heat �ux q(k) on segment �(k) are now represented by IRBFNs in
terms of the curvilinear co-ordinate s as (Equation (15)),

uj(k) =
mk+2∑
i=1

w(i)uj(k) �H
(i)
(k)(s) (23)

tj(k) =
mk+2∑
i=1

w(i)tj(k) �H
(i)
(k)(s) (24)
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�(k) =
mk+2∑
i=1

w(i)�(k)
�H (i)
(k)(s) (25)

q(k) =
mk+2∑
i=1

w(i)q(k) �H
(i)
(k)(s) (26)

where s∈�(k), mk is the number of training points on the segment k, {w(i)uj(k)}mk+2i=1 , {w(i)tj(k)}mk+2i=1 ,
{w(i)�(k)}mk+2i=1 and {w(i)q(k)}mk+2i=1 are the sets of weights of networks for the velocity uj(k), trac-
tion tj(k), temperature �(k) and normal �ux q(k), respectively. Similarly, the geometry can be
interpolated from the nodal values by using IRBFNs as

x1(k) =
mk+2∑
i=1

w(i)x1(k) �H
(i)
(k)(s) (27)

x2(k) =
mk+2∑
i=1

w(i)x2(k) �H
(i)
(k)(s) (28)

Substitutions of (23) and (24) into (21) and also (25) and (26) into (22) yield,

Ns∑
k=1

∫
�(k)

Tij(y;x)
(
mk+2∑
i=1

w(i)uj(k) �H
(i)
(k)(s)−

ml+2∑
i=1
w(i)uj(l) �H

(i)
(I)(sy)

)
d�(k)(s)

−
Ns∑
k=1

∫
�(k)

Uij(y;x)
(
mk+2∑
i=1

w(i)tj(k) �H
(i)
(k)(s)

)
d�(k)(s) + VIm=0 (29)

Ns∑
k=1

∫
�(k)

q∗(y;x)
(
mk+2∑
i=1

w(i)�(k) �H
(i)
(k)(s)−

ml+2∑
i=1
w(i)�(l) �H

(i)
(I)(sy)

)
d�(k)(s)

−
Ns∑
k=1

∫
�(k)

u∗(y;x)
(
mk+2∑
i=1

w(i)q(k) �H
(i)
(k)(s)

)
d�(k)(s) + VIe=0 (30)

or,

Ns∑
k=1

{
mk+2∑
i=1

w(i)uj(k)

(∫
�(k)

Tij(y;x) �H
(i)
(k)(s) d�(k)

)
−
ml+2∑
i=1
w(i)uj(l)

(∫
�(k)

Tij(y;x) �H
(i)
(I)(sy) d�(k)

)}

−
Ns∑
k=1

mk+2∑
i=1

w(i)tj(k)

(∫
�(k)

Uij(y;x) �H
(i)
(k)(s) d�(k)

)
+ VIm=0 (31)

Ns∑
k=1

{
mk+2∑
i=1

w(i)�(k)

(∫
�(k)

q∗(y;x) �H (i)
(k)(s) d�(k)

)
−
ml+2∑
i=1
w(i)�(l)

(∫
�(k)

q∗(y;x) �H (i)
(I)(sy) d�(k)

)}

−
Ns∑
k=1

mk+2∑
i=1

w(i)q(k)

(∫
�(k)

u∗(y;x) �H (i)
(k)(s) d�(k)

)
+ VIe=0 (32)
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where mk can vary from segment to segment. Equations (31) and (32) are formulated in
terms of the IRBFN weights of networks for the functions rather than the nodal values of the
functions as in the case of standard BEM. Clearly, the weakly singular integrals in (31) and
(32) can be treated as in the case of standard BEM.

4.2. Decoupled approach

The process of locating the source point y at all boundary training points results in a system of
non-linear equations with the unknowns being the IRBFN weights. The decoupled approach is
adopted here to handle this non-linearity. At each iteration in this approach, the momentum and
the energy equations are solved in two sequential steps, where BEM procedures for the viscous
�ow problem and the potential problem can be directly applied without any modi�cation. For
a given kinematics, the buoyant force is obtained by solving integral equations (32) (the
energy equation). The kinematics are then updated by solving integral equations (31) (the
momentum equation), and the procedure is iterated until a stopping criterion is satis�ed.
Hence, an attractive feature of this technique is that the requirement of core memory is
signi�cantly less than in the case of coupled approaches, where the discretized governing
equations are solved simultaneously for the whole set of primary variables, usually by means
of Newton’s iterative scheme in which the unknowns also contain internal values. In solving
integral equations (31) and (32), the Picard’s iterative algorithm is employed to render non-
linear terms linear.

4.3. Flow chart

The procedural �ow chart can be brie�y summarized as follows:

1. Divide the boundary into a relatively small number of segments over each of which the
boundary is smooth and the prescribed boundary conditions are of the same type;

2. Apply the IRBFN method for the approximation of the prescribed physical boundary
conditions in order to obtain IRBFN weights which are the boundary conditions in the
weight space;

3. Guess the initial temperature and velocity �elds (usually initialized to zero in the present
work);

4. Compute the pseudo-body force VIm, which contains the buoyant force and the convec-
tive term, using the updated temperature and velocity �elds;

5. Solve integral equation (31) (the momentum equation) for the new velocity �eld;
6. Compute the pseudo-source function VIe in the Poisson’s equation using the new velocity
�eld obtained from the previous step;

7. Solve integral equation (32) (the energy equation) for the new temperature �eld;
8. Check for convergence. Convergence measure (CM) at the kth iteration is measured
as the norm of the relative di�erence of the velocity and temperature �elds between
two successive iterations kth and (k − 1)th. The solution procedure is terminated when
CM ¡ tol, where tol is a set tolerance (in this work tol=5:e − 3);

9. If not yet converged, repeat from the step 4; or exit if it is deemed that the procedure
will not converge;

10. If converged, output the results.
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Note that system matrices obtained here depend only on the geometry of the problem and
hence the computation of the two inverse matrices in steps 5 and 7 needs be done only once at
the �rst iteration for all subsequent iterations and also for all values of the Rayleigh number,
provided that the mesh data are �xed. However, RHS vectors containing volume integrals
change and need to be updated during the iterative process.

5. NATURAL CONVECTION IN A SQUARE CAVITY

Natural convection in an enclosed cavity provides a means to test and validate numerical
methods. The problem, which is in itself of considerable practical interest, is schematically
shown in Figure 1. The domain of interest is a square cavity of a unit size, containing a
Boussinesq �uid of Prandtl number of 0.71. Non-slip boundary conditions (u1 = 0; u2 = 0) are
applied along all the walls. The left and right vertical walls are kept at temperatures �h=1
and �c=0, while the horizontal walls are insulated.
As reviewed in the Introduction section earlier, for the case of using the primitive variables

formulation and linear triangular cells, the standard BEM was reported to achieve Rayleigh
numbers only up to 1:e4 (an attempt at higher Ra number of 1:0e5 using 132 non-uniform
boundary nodes failed to produce convergence) [11]. It is instructive to note that by only

Figure 1. Natural convection �ow in a square cavity: geometry de�nition, boundary condition and
discretization. Legends ◦: boundary point and �: internal point. The boundary is simply represented by
the set of points (i.e. there are no boundary elements involved in variable interpolation). The volume

cells are the same as in other comparative works cited in this paper.
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Table I. Natural convection �ow in a square cavity: a number of meshes are used
for the study of convergence.

Mesh B. points I. points Tri. elements Matrix size of (31) Matrix size of (32)

11× 11 11× 4 9× 9 208 44× 52 88× 104
21× 21 21× 4 19× 19 808 84× 92 168× 184
31× 31 31× 4 29× 29 1808 124× 132 248× 264
41× 41 41× 4 39× 39 3208 164× 172 328× 344
51× 51 51× 4 49× 49 5008 204× 212 408× 424
Boundary points (B. points), internal points (I. points) and triangular elements (T. elements)
together with matrix sizes are displayed. The matrix sizes obtained here are much smaller than
those associated with FEM and FDM. For example, with a mesh of 51× 51, the matrix sizes
corresponding to the energy and momentum equations are 204× 212 and 408× 424, respec-
tively, while they are about 2601× 2601 and 5202× 5202 in the case of FEM without pressure.
The ratio of the matrix sizes between the two numerical methods is about 156.

replacing linear interpolations along the boundary by IRBFNs while keeping all other aspects
the same, the use of 124 uniformly distributed boundary nodes can yield Convergence up to
Ra=1:0e7 (to be shown later). Thus the main feature of IRBFN–BEM is that the method
can produce good results using relatively low numbers of boundary nodes.
A number of uniform meshes, namely 11× 11 (i.e. 11× 4 boundary points and 9× 9 internal

points), 21× 21, 31× 31, 41× 41 and 51× 51 with the detail given in Table I are employed
to study this problem for a wide range of values of the Rayleigh number from 1:0e4 to
1:0e7. The �nest number of boundary nodes used here (204 nodes) seems to be much larger
than those reported in the BEM literature for the same problem (e.g. 84 nodes in Reference
[22], 124 nodes in Reference [11], 164 boundary nodes in Reference [23]). It is known that
for the solution of integral equations of �rst kind (i.e. boundary conditions given in terms
of velocity and temperature), large numbers of boundary nodes can lead to ill-conditioned
systems of algebraic equations. In this sense, the present IRBFN–BEM has another advantage
over the standard BEM in solving �rst kind integral equations. The sizes of system matrices
obtained are much smaller than those associated with the FDM and FEM. For example, with
a mesh of 51× 51, the matrix sizes corresponding to the energy and momentum equations are
204× 212 and 408× 424, respectively, while they are about 2601× 2601 and 5202× 5202 in
the case of FEM (without pressure). The ratio of the matrix sizes between the two numerical
methods is about 156. However, due to the presence of integration constants in IRBFNs, the
number of network weights is greater than the number of collocation points, leading to non-
square matrices in the present procedures. The boundary of domain is divided into 4 segments
corresponding to the four edges of the cavity and on each segment, the set of boundary points
becomes the set of centres and also the set of collocation points of the network. In order to
be able to present the correct description of multivalued traction at the corner, the extreme
centres on each segment are shifted into the segment by a 1

4 of the distance between two
adjacent centres (Figure 1). General results for this problem in the form of velocity vector and
isotherm plots are displayed in Figures 2 and 3, respectively, where Rayleigh number values
range from 1:0e4 to 1:0e7 and �ner meshes are used for higher Ra values. It can be seen that
there is a very close agreement with results available in the literature. The temperature and
velocity vector �elds are skew-symmetric with regard to the geometric centre of the cavity
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(c)

(a) (b)

(d)

Figure 2. Natural convection �ow in a square cavity: velocity �elds. It can be seen that thin
boundary layers appear for the �ow close to the walls as the Rayleigh number increases. The
mesh size is displayed for each Ra value: (a) Ra = 1:0e4; 21× 21; (b) Ra=1:0e5; 31× 31;

(c) Ra=1:0e6; 41× 41; and (d) Ra=1:0e7; 51× 51.

(centro-symmetric). Furthermore, temperature boundary layers at the vertical walls appear to
be thinner and the isotherms are nearly horizontal in the core �ow as the Rayleigh number
increases. Thin boundary layers are also observed for the �ow close to the walls.

5.1. Mesh convergence

The use of the last three �ner meshes can achieve convergence up to a high Rayleigh number
of Ra=1:0e7, while coarser meshes of 21× 21 and 11× 11 can only yield convergence at
lower values of the Rayleigh number of 1:0e6 and 1:0e5, respectively. An important measure
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(a) (b)

(d)(c)

Figure 3. Natural convection �ow in a square cavity: temperature �elds. It can be seen
that temperature boundary layers at the vertical walls appear to be thinner and the
isotherms are nearly horizontal in the core �ow as the Rayleigh number increases. The
mesh size is displayed for each Ra value: (a) Ra=1:0e4; 21× 21; (b) Ra=1:0e5; 31× 31;

(c) Ra=1:0e6; 41× 41; and (d) Ra=1:0e7; 51× 51.

associated with this type of �ow is the Nusselt number de�ned by,

Nu(x1)=
∫ 1

0
(u1�− �;1) dx2

which is used here to study mesh convergence. Integrals here are computed using Simpson
rule. Results obtained for the �rst three Rayleigh numbers and various mesh densities are
displayed in Table II, where the values of Nusselt numbers on the hot wall (Nu0 =Nu(x1 = 0))
and throughout the cavity ( �Nu=

∫ 1
0 Nu(x1) dx1) approach the benchmark solution of de Vahl

Davis [6] as the mesh density increases. Unfortunately, the benchmark solution at a high
Rayleigh number of 1:0e7 was not available, and the present results are qualitatively compared
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Table II. Natural convection �ow in a square cavity: comparison of Nusselt numbers (a) on the hot
wall (Nu0) and (b) throughout the cavity ( �Nu) obtained by the present IRBFN–BEM for a range of
Ra=1:e4–1:e6 and the benchmark solution of de Vahl Davis [6] which shows a very close agreement.

IRBFN–BEM

Mesh 11× 11 21× 21 31× 31 41× 41 51× 51 Benchmark solution

Ra=1e + 4
Nu0 2.26 2.25 2.25 2.25 2.25 2.24
�Nu 2.26 2.25 2.25 2.25 2.25 2.24
Ra=1e + 5
Nu0 4.83 4.63 4.60 4.56 4.55 4.51
�Nu 4.47 4.53 4.53 4.53 4.53 4.52
Ra=1e + 6
Nu0 — 9.64 9.29 9.13 9.04 8.82
�Nu — 8.45 8.68 8.75 8.79 8.80

For a given Rayleigh number, the accuracy increases with increasing number of mesh points. On the other hand,
for a given mesh, the accuracy at a high Rayleigh number is not as good as the accuracy at a lower Rayleigh
number. These observations can also be seen in the standard BEM [11], for example, the error of Nusselt number
signi�cantly increases from 0.35% (Ra=1e3) to 0.84% (Ra=1e4) using the same mesh. The estimate of volume
integrals appeared to have contributed to the increased errors as Rayleigh number increases [23].

Table III. Natural convection �ow in a square cavity: qualitative comparison
of the Nusselt number throughout the cavity ( �Nu) at Ra=1:0e7, Gr=1:4e7
obtained by the present IRBFN–BEM and those by BDIE [12] and FVM

[10] at Ra=7:1e6, Gr=1:0e7.

IRBFN–BEM BDIE FVM
(Gr=1:4e7) (Gr=1:0e7) (Gr=1:0e7)

Mesh 31× 31 41× 41 51× 51 41× 41 40× 30
�Nu 15.12 15.53 15.85 14.18 15.09

Unfortunately, another solution at Rayleigh number of 1:0e7 was not available for a
quantitative comparison.

with those obtained by FVM [10] and BDIE [12] as shown in Table III, which is reasonable.
To observe the behaviour of mesh convergence, the plot of the convergence rate is given in
Figure 4. By regarding the solution on the �nest mesh as ‘the exact one’, errors in the Nusselt
number on coarser meshes relative to the ‘exact solution’ are computed and then shown in
semi-logarithmic scale co-ordinate axes. For each Rayleigh number, the error obtained is
consistently smaller as the mesh spacing decreases, which indicates the achievement of mesh
convergence. With the same mesh size employed, the result at a lower Rayleigh number has a
smaller error as expected. In the case of Ra=1:e4, all errors obtained are less than 1% which
means coarse meshes used here are adequate and able to capture the solution very well.
Another result to examine is the bulk continuity of the �ow which is important for an

overall quantitative sense of the solution accuracy [35]. For the cavity �ow this is commonly
achieved by computing the �ow rate across the vertical plane passing through the geometric
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Figure 4. Natural convection �ow in a square cavity: errors in the Nusselt number (%)
computed on coarser meshes relative to the result on the �nest mesh 51× 51. For each
Rayleigh number, the error here is consistently smaller as the mesh spacing decreases,
which indicates the achievement of mesh convergence by the present method. With the
same mesh density employed, the result at a lower Rayleigh number has a smaller error as
expected. In the case of Ra=1:e4, errors obtained are less than 1% which means coarse

meshes used here are adequate and able to capture the solution very well.

centre of the cavity as follows

Q=
1
Q0

∣∣∣∣∣
∫ 1

0
u1(x1 = 0:5; x2) dx2

∣∣∣∣∣
where Q0 is the characteristic �ow rate and chosen to be Q0 = 1

2 |(u1)max|1 as in the case of
the Couette �ow. A more accurate solution would necessarily yield the �ow rate closer to
the exact value of zero. The �ow rates for all Rayleigh numbers and various mesh sizes are
shown in Table IV. The results show that the �ow rates consistently tend to zero as the mesh
density increases for all studied cases.

5.2. Solution accuracy

The present results are in good agreement with the benchmark solution, for example, errors
in the Nusselt number throughout the cavity for the �rst three Rayleigh numbers (Table II)
are within 0.5%. For a better view of the solution, variations of some important quantities
for this type of �ow are plotted. Firstly, the distribution of Nusselt numbers along the hot
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Table IV. Natural convection �ow in a square cavity: the volumetric �ow rate across
the vertical mid-plane obtained by the present method.

IRBFN–BEM

Mesh 11× 11 21× 21 31× 31 41× 41 51× 51 Exact solution

Q(Ra=1e + 4) 5:0e − 3 2:8e − 3 9:5e − 4 4:5e − 4 2:6e − 4 0
Q(Ra=1e + 5) 1:7e − 2 1:0e − 2 3:5e − 3 1:7e − 3 9:8e − 4 0
Q(Ra=1e + 6) — 6:0e − 2 2:1e − 2 1:0e − 2 6:0e − 3 0
Q(Ra=1e + 7) — — 9:5e − 2 4:3e − 2 2:5e − 2 0

This quantity is de�ned by Q=1=Q0|
∫ 1
0 u1(x1 = 0:5; x2) dx2|, where Q0 is the characteristic �ow

rate and chosen to be Q0 = 1
2 |(u1)max|1 as in the case of the Couette �ow. For each Rayleigh

number, the values tend to the exact value of zero as a mesh density increases which show
that the characteristic of a mesh convergence is achieved. With the same mesh employed, it is
expected that the error is smaller with reducing a Rayleigh number which are properly re�ected
through the decrement of the �ow rate values here.

wall (Nu0) and the vertical centreline (Nu1=2) are presented in Figure 5 with the errors of the
maximum value of Nu0 being within 1.19% compared to the benchmark solution. Furthermore,
the horizontal velocity pro�les along the vertical centre line of the cavity and the vertical
velocity pro�les along the horizontal centreline are displayed in Figure 6, where errors of the
maximum horizontal velocity are within 0.63% of the benchmark solution.

6. NATURAL CONVECTION IN A HORIZONTAL CONCENTRIC ANNULUS

Natural convection in a horizontal concentric annulus, which is important in many engineering
applications, is studied and reported in this section. The problem’s geometry involves curved
boundaries and therefore provides a means to validate further the present method. A compre-
hensive review of the investigations of this problem has been made by Kuehn and Goldstein
[4]. Many solutions were obtained with Pr=0:7 and L=Di=0:8, in which L is the gap width
between the cylinders and Di is the diameter of the inner cylinder. These conditions are also
employed in the present work. Kuehn and Goldstein [4] reported the results at Ra=1:0e3,
1:0e4 and 5:0e4 using FDM. Recently, Shu [2] provided the benchmark solution for Rayleigh
numbers ranging from 1:0e2 to 5:0e4 using the di�erential quadrature (DQ) methods based
on a polynomial of high degree and the Fourier series expansion. More recently, solutions of
natural convection �ows by the RBF-based DQ method were reported by Wu and Shu [36]
and Shu et al. [37].
Since the �ow is symmetric with respect to the vertical centreline, only half of the domain

needs be taken as the computational domain. Figure 7 shows a schematic of domain together
with volume discretization and boundary conditions. The boundary is divided into 4 segments
(two straight lines and two curves) with boundary conditions being,

u1 = 0; t2 = 0 and �;1 = 0

on the symmetry lines,

u1 = 0; u2 = 0 and �=0
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Figure 5. Natural convection �ow in a square cavity: variations of Nusselt numbers along
the hot wall and the vertical centreline for the �ne mesh of 51× 51. Errors of the maximum
value of the Nusselt number on the hot wall for Ra=1:0e4, Ra=1:0e5 and Ra=1:0e6 are,
respectively, 0.21, 0.50 and 1.19% compared to the benchmark solution: (a) Nu0 on the hot

wall; and (b) Nu1=2 on the vertical centreline.
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Figure 6. Natural convection �ow in a square cavity: plots of velocity pro�les along
the vertical and horizontal centrelines for the �ne mesh of 51× 51. As the Rayleigh
number is increased, boundary layers appear to be thinner: (a) u1 on the vertical

centreline; and (b) u2 on the horizontal centreline.
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Figure 7. Natural convection �ow in a horizontal concentric annulus: geometry def-
inition, boundary condition and discretization. Legends ◦: boundary point and �:
internal point. The boundary is simply represented by the set of points (i.e. there are
no boundary elements involved in variable interpolation). The volume cells are the

same as in comparative works cited in this paper.

on the outer cylinder and

u1 = 0; u2 = 0 and �=1

on the inner cylinder. Four uniformly distributed meshes, namely 11× 21 (11 in the radial
direction and 21 in the angular direction), 16× 31, 21× 41 and 31× 61 for Rayleigh numbers
Ra=1:0e3; 6:0e3; 1:0e4; 5:0e4 are employed to study mesh convergence (Table V). All
meshes here are able to produce convergence at the highest Rayleigh number. Particularly, for
a high Ra=5:0e4, the use of only a coarse mesh of 11× 21 seems to indicate that the IRBFN
interpolation yields superior accuracy in solving PDEs. Results for this problem in the form
of velocity vector and isotherm plots are shown in Figure 8 for various Rayleigh numbers and
di�erent meshes, which agree well with those of Kuehn and Goldstein [4]. As the Rayleigh
number increases, the centre of rotation of the �ow shifts upwards, while the temperature
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Table V. Natural convection �ow in a horizontal concentric annulus: a number of
meshes are used for the study of convergence.

Mesh B. points I. points Tri. elements Matrix size of (31) Matrix size of (32)

11× 21 (11 + 21)× 2 9× 19 408 64× 72 128× 144
16× 31 (16 + 31)× 2 14× 29 908 94× 102 188× 204
21× 41 (21 + 41)× 2 19× 39 1608 124× 132 248× 264
31× 61 (31 + 61)× 2 29× 59 3608 184× 192 368× 384
Boundary points (B. points), internal points (I. points) and triangular elements (T. elements) together with matrix
sizes are displayed.

(a) (b)

(c) (d)

Figure 8. Natural convection �ow in a horizontal concentric annulus: temperature and velocity
vector �elds. With an increase in the Rayleigh number, the centre of rotation of the �ow shifts
upwards, while the temperature distribution resembles eccentric circles at the Ra=1:0e3 and then
becomes distorted with the appearance of thermal boundary layers near the lower portion of the
inner cylinder and the top of the outer cylinder: (a) Ra=1:0e3; 11× 21; (b) Ra=6:0e3; 16× 31;

(c) Ra=1:0e4; 21× 41; and (d) Ra=5:0e4; 31× 61.
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Table VI. Natural convection �ow in a horizontal concentric annulus: comparison of the
average equivalent conductivity obtained between the present IRBFN–BEM, the FDM [4]
and the DQ method [2]. The latter is regarded as the benchmark solution (Bench. sol.),

which shows a very close agreement between the methods.

IRBFN–BEM

Mesh 11× 21 16× 31 21× 41 31× 61 FDM Bench. sol.

Ra=1:0e + 3
�keqi 1.087 1.084 1.083 1.082 1.081 1.082
�keqo 1.079 1.080 1.080 1.081 1.084 1.082
Ra=6:0e + 3
�keqi 1.790 1.747 1.732 1.722 1.736 1.715
�keqo 1.785 1.735 1.721 1.715 1.735 1.715
Ra=1:0e + 4
�keqi 2.087 2.028 2.006 1.990 2.010 1.979
�keqo 2.117 2.023 1.995 1.981 2.005 1.979
Ra=5:0e + 4
�keqi 3.224 3.095 3.043 2.9992 3.024 2.958
�keqo 3.970 3.405 3.171 3.0210 2.975 2.958
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Figure 9. Natural convection �ow in a horizontal concentric annulus: errors of the average equivalent
conductivity (%) computed on coarser meshes relative to the result on the �nest mesh 31× 61. For each
Rayleigh number, the error here is consistently smaller as the mesh density increases, which indicates
the achievement of mesh convergence by the present method. With the same mesh density employed,

a lower Rayleigh number has a smaller error as expected.
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Figure 10. Natural convection �ow in a horizontal concentric annulus (Ra=5:0e4): Com-
parison of the local equivalent conductivity between the present method using a mesh of

31× 61 and the FDM [4] which shows a close agreement.

distribution resembles eccentric circles at the Ra=1:0e3 and then becomes distorted with the
appearance of thermal boundary layers near the lower portion of the inner cylinder and the top
of the outer cylinder. Another important result is the average equivalent conductivity denoted
by �keq. This quantity is de�ned as the actual heat �ux divided by the heat �ux that would
occur by pure conduction in the absence of �uid motion [4] as follows:

�keqi =
− ln(Ro=Ri)
�(Ro=Ri − 1)

∫ �

0
�; r d


for the inner cylinder, and

�keqo =
−(Ro=Ri) ln(Ro=Ri)
�(Ro=Ri − 1)

∫ �

0
�; r d


for the outer cylinder in which Ri and Ro are the radii of inner and outer cylinders, respec-
tively. Table VI summarizes the present results for various Rayleigh numbers using di�erent
meshes and those of Kuehn and Goldstein [4] obtained from the second-order �nite di�er-
ence scheme and of Shu [2] obtained from the di�erential quadrature (DQ) method. The
good agreement for both outer and inner cylinders can be seen between numerical meth-
ods. For each Rayleigh number, the mesh convergence of the average equivalent conductiv-
ity is very consistent and in addition the convergence rate is displayed in semi-logarithmic
scale co-ordinate system in Figure 9. Variations of the local equivalent conductivity on cylin-
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der surfaces in comparison with numerical results of Kuehn and Goldstein [4] are given in
Figure 10, showing a close agreement.

7. CONCLUDING REMARKS

This paper reports an e�ective BEM, through the introduction of ‘universal approximator’ RBF
networks into the standard BEM scheme to represent all boundary values including geometries,
for the analysis of natural convection �ow. A decoupled technique is adopted, where the
momentum and energy equations are solved sequentially. The non-linear terms are treated
using Picard iteration with linear triangular cell approximation. The use of the decoupled
approach and also the integral representation results in very small systems of equations in
comparison with the FEM and FDM. High Rayleigh number solutions are achieved with the
use of relatively coarse and uniform mesh. Numerical results show the achievement of high
convergence rate and a close agreement with previously published numerical solutions.
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